A genetic algorithm for the identification of conformationally invariant regions in protein molecules.
نویسنده
چکیده
Understanding macromolecular function often relies on the comparison of different structural models of a molecule. In such a comparative analysis, the identification of the part of the molecule that is conformationally invariant with respect to a set of conformers is a critical step, as the corresponding subset of atoms constitutes the reference for subsequent analysis for example by least-squares superposition. A method is presented that categorizes atoms in a molecule as either conformationally invariant or flexible by automatic analysis of an ensemble of conformers (e.g. crystal structures from different crystal forms or molecules related by non-crystallographic symmetry). Different levels of coordinate precision, both for different models and for individual atoms, are taken explicitly into account via a modified form of Cruickshank's DPI [Cruickshank (1999), Acta Cryst. D55, 583-601] and are propagated into error-scaled difference distance matrices [Schneider (2000), Acta Cryst. D56, 715-721]. All pairwise error-scaled difference distance matrices are then analysed simultaneously using a genetic algorithm. The algorithm has been tested on several well known examples and has been found to converge rapidly to reasonable results using a standard set of parameters. In addition to the description of the algorithm, a criterion is suggested for testing the identity of two three-dimensional models within experimental error without any explicit superposition.
منابع مشابه
Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کامل4D-QSAR analysis and pharmacophore modeling: propoxy methylphenyl oxasiazole derivatives by electron conformatitional-genetic algorithm method
In this 4D-QSAR study, we obtained pharmacophore identification and biological activity prediction for 50 propoxy methylphenyl oxadiazole derivatives by the Electron Conformational Genetic Algorithm approach. In light of the results given in the data obtained from quantum chemical calculations at HF/3-21 G level, the electron conformational matrices of congruity (ECMC) were built by EMRE softwa...
متن کاملBASIS PURSUIT BASED GENETIC ALGORITHM FOR DAMAGE IDENTIFICATION
In damage detection the number of elements is generally more than the number of measured frequencies. Consequently, the corresponding damage detection equation is undetermined and thus has infinite solutions. Since in the damaged structures most of their elements remain healthy, the sparsest solution for the damage detection equation is mostly the actual damage. In the proposed method, the dama...
متن کاملDoSA: Database of Structural Alignments
Protein structure alignment is a crucial step in protein structure-function analysis. Despite the advances in protein structure alignment algorithms, some of the local conformationally similar regions are mislabeled as structurally variable regions (SVRs). These regions are not well superimposed because of differences in their spatial orientations. The Database of Structural Alignments (DoSA) a...
متن کاملParameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 58 Pt 2 شماره
صفحات -
تاریخ انتشار 2002